The BMP Ligand Gdf6 Prevents Differentiation of Coronal Suture Mesenchyme in Early Cranial Development

نویسندگان

  • Dawn E. Clendenning
  • Douglas P. Mortlock
چکیده

Growth Differentiation Factor-6 (Gdf6) is a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules. Previous studies have shown that Gdf6 plays a role in formation of a diverse subset of skeletal joints. In mice, loss of Gdf6 results in fusion of the coronal suture, the intramembranous joint that separates the frontal and parietal bones. Although the role of GDFs in the development of cartilaginous limb joints has been studied, limb joints are developmentally quite distinct from cranial sutures and how Gdf6 controls suture formation has remained unclear. In this study we show that coronal suture fusion in the Gdf6-/- mouse is due to accelerated differentiation of suture mesenchyme, prior to the onset of calvarial ossification. Gdf6 is expressed in the mouse frontal bone primordia from embryonic day (E) 10.5 through 12.5. In the Gdf6-/- embryo, the coronal suture fuses prematurely and concurrently with the initiation of osteogenesis in the cranial bones. Alkaline phosphatase (ALP) activity and Runx2 expression assays both showed that the suture width is reduced in Gdf6+/- embryos and is completely absent in Gdf6-/- embryos by E12.5. ALP activity is also increased in the suture mesenchyme of Gdf6+/- embryos compared to wild-type. This suggests Gdf6 delays differentiation of the mesenchyme occupying the suture, prior to the onset of ossification. Therefore, although BMPs are known to promote bone formation, Gdf6 plays an inhibitory role to prevent the osteogenic differentiation of the coronal suture mesenchyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1.

The characterization of mesenchymal progenitors is central to understanding development, postnatal pathology and evolutionary adaptability. The precise identity of the mesenchymal precursors that generate the coronal suture, an important structural boundary in mammalian skull development, remains unclear. We show in mouse that coronal suture progenitors originate from hedgehog-responsive cephal...

متن کامل

Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma.

Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative onc...

متن کامل

Bone morphogenetic protein is required for fibroblast growth factor 2-dependent later-stage osteoblastic differentiation in cranial suture cells.

BACKGROUND Understanding the pathophysiological process of calvarial bones development is important for the treatments on relative diseases such as craniosynostosis. While, the role of fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) and how they interacted in osteoblast differentiation remain unclear. METHODS we digested bone fragments around the coronal and sagittal sutur...

متن کامل

Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border.

The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates β-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is requir...

متن کامل

Xenopus GDF6, a new antagonist of noggin and a partner of BMPs.

In Xenopus, ectodermal cell fates are determined by antagonistic interaction between the BMP subfamily of TGF-(beta) ligands and the organizer-specific secreted factors (e.g. noggin, chordin and follistatin). Inhibition of BMP function by these factors can convert cells from an epidermal to a neural cell fate. In this study, we report that GDF6, a new member of the Xenopus TGF-(beta) family, ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012